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Abstract
Understanding how children’s spontaneous language behav-
ior relates to standardized metrics of language development
remains a crucial challenge in developmental science, par-
ticularly given the time and resources required for many
traditional lab-based assessments. This study investigates
whether automated analysis of naturalistic, child-centered au-
dio recordings can index the developmental trajectory of
speech-language abilities. Using a longitudinal design follow-
ing N=130 preschoolers, we employed deep learning meth-
ods to compute CANONICAL PROPORTION—a theoretically-
motivated metric that reflects both speech motor control devel-
opment and phonological representation building—from natu-
ralistic, child-centered audio recordings at age 3 years. Canon-
ical proportion measures significantly predicted multiple di-
mensions of speech-language development longitudinally, for-
mally assessed in the lab one year later at age 4. The strongest
relationships were found for consonant articulation skill and
vocabulary size, suggesting that early speech production pat-
terns may moderately index numerous later facets of language
development. These findings outline a potential relationship
between children’s spontaneous, everyday language behav-
ior and more traditional language development metrics, while
demonstrating the potential for automated measures to expand
and diversify research in developmental science.
Keywords: speech; language development; naturalistic obser-
vation; automated assessment; child development

Introduction
Children’s speech capacities change rapidly in the first 5
years of life (Oller, 2000). In preschoolhood, the stages of
both speech perception and production development are tra-
ditionally assessed via tightly controlled behavioral experi-
ments such as looking while listening eye-tracking paradigms
for perceptual development (Fernald, Zangl, Portillo, &
Marchman, 2008) or targeted, elicited phoneme production
(Edwards, Beckman, & Munson, 2004). While findings from
this type of experimentation have increased our understand-
ing of children’s speech-language development, there are sev-
eral drawbacks. First, the paradigms are almost exclusively
conducted in formal university lab environments, skewing
the samples and resulting in biases along several dimensions
(e.g. linguistic, socioeconomic, cultural). For example, only
1.5% of the world’s languages have ever been represented
in mainstream language acquisition journals (Kidd & Garcia,
2022), a fact that limits the generalizability of results and pro-
posed theories of language and cognitive development (Blasi,
Henrich, Adamou, Kemmerer, & Majid, 2022). Second, in-
lab assessments are extremely time-consuming and resource-
intensive, for both children and researchers, leading to much

work in developmental cognitive science lacking sufficient
statistical power (Nielsen, Haun, Kärtner, & Legare, 2017).
Finally, in-lab assessments, especially for children, may not
reflect a child’s true, underlying speech-language capacities if
children are uncooperative, fatigued, or nervous during test-
ing (Conti-Ramsden & Durkin, 2012). What is needed is a
method to model children’s developing speech-language ca-
pabilities that is portable, easy-to-administer, and ideally can
be collected from children as they naturally go about their
day.

Here we propose one such method, and we give an
overview of the idea that we can automatically estimate
stages of a child’s speech-language development from long-
form, child-centered audio recordings of children’s every-
day lives (Sy, Havard, Lavechin, Dupoux, & Cristia, 2023).
Experimentalists and clinicians alike have traditionally as-
sessed children’s developing speech-language capacities us-
ing painstaking manual annotation and experimentation that
require hours of labor and months of training. The ability to
forgo some or part of these tasks would thus be a significant
advance in developmental science, potentially allowing re-
searchers to diversify and increase their participant samples.

Quantifying child speech maturity in preschoolhood
A key metric used to assess speech development in early
childhood is CANONICAL PROPORTION (CP), which tracks
the proportion of more complex, “canonical” vocalizations
consisting of both consonants and vowels in quick transition
(e.g. “ba”) to all of child’s speech-like vocalizations, includ-
ing simpler, “non-canonical” vocalizations that consist of sin-
gle vowels (“aa”) or consonants (“mmm”) (Oller, 2000). CP
is a crucial measure of a child’s developing speech capacities
because it reflects the increasing complexity of vocalizations
as children develop, providing insights into how children are
reaching developmental milestones in speech and language.
Critically, for our purposes, CP continues to increase well
past the pre-lexical period. Recent work shows that CP con-
tinues to increase up through at least 6 years (Hitczenko et
al., 2023), demonstrating the potential for CP to indicate how
speech continues to develop and mature long after the tran-
sition from babbling to word use.Moreover, canonical bab-
bling ratio (CBR), while widely used in infancy research, is
similarly time-intensive to annotate and lacks strong predic-
tive validity beyond early developmental stages, making auto-



mated CP estimation a contribution along both methodologi-
cal and theoretical dimensions.

Relating canonical proportion to additional
speech-language measures
While previous work has established that CP increases with
age, and thus serves as a developmental indicator of speech
maturity in children up to 6 years (Hitczenko et al., 2023;
Long et al., 2024), there is limited understanding of how
CP relates to other areas of child speech-language develop-
ment. There are, however, clear reasons to anticipate that
CP may predict some areas of children’s developing speech
and language. For one thing, there are well-known, posi-
tive relationships between 3- and 4-year-olds’ speech articu-
lation skills (e.g. number of consonants correctly produced
as assessed in the lab during targeted phoneme elicitation
tasks) and numerous areas of language development, includ-
ing children’s receptive and expressive vocabulary sizes (Sosa
& Stoel-Gammon, 2012), phonological awareness (Foy &
Mann, 2003), and phonological working memory (the abil-
ity to temporarily store and recall of sound-based informa-
tion) (Adams & Gathercole, 1996). Rudimentary versions of
these relationships between speech production and nascent
language begin to develop as early as the first year of life:
for example, infant speech volubility at 6 months of age pos-
itively predicts vocabulary development and language com-
plexity abilities at one year (Lee, Jhang, Relyea, Chen, &
Oller, 2018).

Evidence of connections between preschoolers’ speech
production maturity and phonological working memory have
been documented using nonword repetition (NWR) tasks,
where children are asked to repeat novel, phonotactically-
probable words after a model speaker (e.g. “sudras”). Chil-
dren’s ability to faithfully repeat nonwords is strongly related,
although not perfectly predicted by, their speech articulation
skills (Gathercole, 2006). NWR requires children to process
and store phonological information, which is directly rele-
vant to articulating sounds accurately (Adams & Gathercole,
1996). Similarly, since CP tracks the transition to more ma-
ture speech, it may also relate to a child’s ability to han-
dle and integrate increasingly complex phonological informa-
tion. This suggests a potential relationship between CP and
NWR ability, supporting the idea that these measures might
be linked indicators of broader language development, specif-
ically in terms of phonological processing and speech articu-
lation.

Current Study
In this study we ask the following overarching research ques-
tion: How does automated computation of CP over day-
long, child-centered audio recordings predict different areas
of speech-language development in a large, longitudinal sam-
ple of 3- and 4-year-olds (N=130)? Specifically, using a pre-
trained child speech maturity classifier (details in Methods),
we compute each child’s CP over a longform audio recording
made in the child’s home at age 3 years. We then relate the

measure of CP to different standardized, in-lab assessments
of speech-language development that the same children com-
pleted 1 year later at age 4: (1) targeted consonant articula-
tion skill, (2) receptive vocabulary, (3) phonological working
memory (Edwards et al., 2004; Gathercole, 2006), (4) lexical-
phonological access, and (5) phonological awareness. While
previous research in each of these domains of speech and
language suggests a positive relationship (e.g. relationships
between child speech maturity and vocabulary size (Sosa &
Stoel-Gammon, 2012)), we make the following more targeted
hypotheses: since CP is foremost a speech production met-
ric, that likewise indexes phonological representation build-
ing, we anticipate the strongest relationships between CP and
those skills requiring integration of these cognitive systems
(consonant articulation skill), followed by meta-phonological
skills (phonological working memory and awareness), and fi-
nally a weaker, though still positive relationship between CP
and skills related to the lexicon (lexical-phonological access,
vocabulary size).

Methods
Participants in this study were part of a longitudinal study of
preschool children (66 boys; 64 girls; 0.78% Asian, 14.73%
African American, 82.17% white, 2.33% other; 97.67% non-
Hispanic, 2.33% Hispanic). All children were typically-
developing, monolingual speakers of American English and
completed a daylong audio recording using the Language
ENvironment Analysis (LENA) system (Xu, Yapanel, &
Gray, 2009) at approximately 3 years of age (‘Timepoint 1’;
see Table 1 for exact ages), and then returned one year later
at approximately age 4 (‘Timepoint 2’) to complete a number
of controlled experimental and standardized speech-language
measures. All participants passed a standard hearing screen-
ing at Timepoints 1 and 2.

Table 1: Participant information at time of daylong recording
and descriptive statistics for speech utterances and clips ex-
tracted from daylong recordings.

M SD Range
Demographics
Age at LENA recording
(mos)

33.75 4.30 28 - 49

Age at speech-language as-
sessments (mos)

45.08 3.55 39 - 55

Maternal education (see
text)

5.88 1.36 1 - 7

Num. of residents in house-
hold

4.23 1.09 2 - 8

Duration of LENA record-
ing (hours)

15.77 1.13 6.65 - 16

Speech Utterances/Clips
# of utterances/recording 3060.53 1447.75 121 - 7428
# of clips/recording 7407.43 3489.91 491 - 17478
Duration of processed clips
(ms)

492.55 99.39 200 - 690

The maternal education variable was quantified on a scale
from 1 to 7, with the categories representing increasing lev-



els of educational attainment: 1 = Less Than High School,
2 = GED, 3 = High School Diploma, 4 = Some College (<2
years), 5 = Some College (>2 years), 6 = College Degree, and
7 = Graduate Degree.

Data Collection
The child wore a small, lightweight LENA recorder (2”x3”;
2 oz.) in a specialized vest throughout the day (appx. 16
hours), excluding water activities. Devices and instructions
were provided by mail or at the research lab, and recordings
were made on typical non-school days to capture naturalis-
tic language environments and ensure a relatively consistent
recording environment between households. See Table 1 for
additional household-level details.

Computing canonical proportion from recordings
Pre-processing child-centered audio recordings See Fig-
ure 1 for data processing flow. To pre-process the record-
ings, we follow methods laid out in Hitczenko et al. (2023)
and Cychosz et al. (2021): The LENA system includes a pro-
prietary speaker diarization algorithm that, among other fea-
tures, segments raw audio into speaker categories (e.g. tar-
get child, adult female). We used this algorithm to identify
all speech utterances from the target child in each recording
(M=3060.53 target child utterances/recording (SD=1447.75)
range=121-7428). To prepare the child speech utterances for
automated classification, we then chopped each utterance into
smaller audio clips of approximately 500-ms (M=7407.43
clips/child (SD=3489.91) range=80-17478). The 500-ms du-
ration was chosen because the pre-trained classifier that we
employed (see next section) was trained over child vocaliza-
tion clips of this length. In all, our pre-processing pipeline
generated 2,037,042 total clips from the 130 children for au-
tomated annotation.

Using a pre-trained child speech maturity classi-
fier to compute canonical proportion We employed a
previously-trained, deep learning child speech maturity clas-
sification algorithm, which classifies child vocalizations into
five categories: “canonical”, “non-canonical”, “crying”,
“laughing”, and “other/junk” (e.g. animal sounds, no sound).
The model processes audio clips through a convolutional neu-
ral network (CNN) feature extractor. Features are then passed
through a transformer architecture (12 layers, 768 hidden di-
mensions, 3072 inner dimensions, 8 attention heads) that was
pre-trained on hundreds of hours of unlabeled LibriSpeech
data (Baevski, Zhou, Mohamed, & Auli, 2020) and then fine-
tuned on labeled task-specific data. Specifically, the model
was fine-tuned on 46,674 audio clips of child vocalizations,
approximately 500-ms in length, that were extracted from
naturalistic, longform child-centered audio data. Children in
the training data were aged 2 months-6 years and were ac-
quiring a variety of languages, including English. None of the
children in the current study were represented in the models’
training data. See Table 2 for model performance statistics.

The model achieved classification accuracy comparable to

Table 2: Performance statistics for child speech maturity clas-
sifier. UAR = Unweighted Average Recall. AUC = Area Un-
der the Curve.

UAR AUC
Overall model performance 71.0 NA
Category
Canonical 78.47 0.94
Non-Canonical 63.58 0.85
Crying 75.96 0.95
Laughing 69.70 0.95
Junk 67.42 0.92

human annotators (Cohen’s K=0.451) and was robust across
rural and urban child rearing settings. This agreement level
reflects the task’s difficulty, as hand-labeling canonical sylla-
bles has only moderate reliability due to noise, overlap, and
subjective boundary judgments. Additional detail on model
architecture, benchmarks, and train/dev/test data structures
available in Zhang, Suresh, Hitczenko, Cristia, and Cychosz
(under review).

Using this model, we classified each 500-ms clip into 1
of the 5 categories: (0) Canonical, (1) Non-Canonical, (2)
Crying, (3) Laughing, or (4) Junk. Finally, for each child,
we computed the CP by taking the number of clips classified
as ‘canonical’ and dividing this by the sum of all speech-like
clips (canonical+non-canonical).

Metrics of speech-language development assessed
To comprehensively evaluate the relationship between CP and
preschoolers’ future speech-language development, we as-
sessed a battery of various speech-language measures when
the children were approximately 4 years of age (see Table
3 for scores/results). When available, we employ standard
scores, normalized for child gender and age. Not all chil-
dren completed every assessment; while 130 children partic-
ipated in the study, some children completed only certain as-
sessments, leading to fewer than 130 children completing any
one particular test. The number and percent of children who
completed each specific assessment are provided in Table 3.
Unless otherwise noted below, children’s responses on the as-
sessments were recorded in real time and final scoring was
conducted following the test.

Consonant articulation skill was assessed with the
Sounds-in-Words portion of the Goldman-Fristoe Test of Ar-
ticulation, 2nd edition (GFTA-2) (Goldman & Fristoe, 2000);
see Usha and Alex (2023) and Macrae (2017) for detail. Chil-
dren’s productions were audio-recorded for offline scoring
following standardized instructions available in the test’s in-
struction manual.

Receptive Vocabulary was assessed using the Peabody
Picture Vocabulary Test, 4th edition (PPVT-4) (Dunn &
Dunn, 2007). Children were presented with a series of im-
ages and asked to select the picture that best matched a spo-
ken word. Responses were scored in real time and scores
computed following test assessment, per test manual instruc-
tions.



Figure 1: Pre-processing pipeline for audio recordings.

Table 3: Descriptive statistics for controlled, in-lab speech-
language assessment completed at Timepoint 2. GFTA =
Goldman Fristoe Test of Articulation-2. PPVT = Peabody
Picture Vocabulary Test-4. CTOPP = Comprehensive Test of
Phonological Processing-2. SS = Standard Score. ES = Eli-
sion Scaled. RWR = Real Word Repetition. NWR = Nonword
Repetition.

M SD Range N (%) Children
Completed

GFTA-2
(SS)

92.98 12.74 61.00 - 119.00 118 (90.77)

PPVT-4
(SS)

119.29 16.68 75.00 - 152.00 118 (90.77)

CTOPP-
2 (ES)

10.76 2.23 6.00 - 16.00 102 (78.46)

RWR
Accuracy

0.96 0.03 0.76 - 0.99 67 (51.54)

NWR
Accuracy

0.95 0.05 0.79 - 1.00 56 (43.08)

Phonological awareness skills were evaluated using the
elision subtest of the Comprehensive Test of Phonologi-
cal Processing, Second Edition (CTOPP-2) (Wagner, 2013),
which assesses the ability to delete specific sounds or parts of
words; see Wagner (2013) for detail.

Lexical-phonological access was assessed through a
picture-prompted verbal repetition task: real word repeti-
tion (RWR). The RWR task assesses how well children have
established stable, accessible lexical-phonological represen-
tations of familiar words—a key developmental achieve-
ment reflecting the integration of lexical forms with prac-
ticed phonological/motor routines. Stimuli consisted of 23
familiar words selected from the “Toddler Says” portion of
the MacArthur-Bates Communicative Development Inven-
tory (Fenson et al., 2007). See Munson, Logerquist, Kim,
Martell, and Edwards (2021) for further detail on RWR task
administration and scoring.

Phonological working memory was assessed through a
picture-prompted, verbal production task—nonword repeti-
tion (NWR)—which evaluated a child’s ability to repeat
novel, phonotactically-probable words, and measured the
child’s capacity to temporarily store and manipulate phono-
logical information without confounds related to lexical ac-
cess/frequency (Gathercole, 2006). Children repeated 23 bi-

Table 4: Descriptive statistics for the number of clips of each
class used in computing each child’s CP (clips/child).

M SD Range
Canonical 2897.10 1693.76 5 - 6414
Non-Canonical 11760.21 969.75 13 - 4355
Crying 587.16 417.90 16 - 1964
Laughing 231.05 158.72 10 - 956
Junk 786.98 601.16 30 - 5033

syllabic nonwords, (e.g. “kaemig” [kæmIg]). Responses
were audio recorded; see Erskine, Munson, and Edwards
(2020) for detail on administration and scoring.

Results
Computing canonical proportion at 3 years of age
We first computed CP from each child’s recording at age 3
years. We found wide variability between children in CP
(M=0.59 (SD=0.12) 0.20-0.76; here 0.59 would indicate that
59% of a child’s speech-like vocalizations contained at least
one consonant-vowel combination), even among a single co-
hort of three-year-olds. This result suggests that CP is de-
tecting variability in children’s early speech production. As
expected, we also found that CP increased with age (r=0.28,
p<.001, even within the 28-49 month age range in the sample.

Predicting standardized speech-language outcomes
at age 4 from canonical proportion at age 3
To examine how CP at age 3 predicts speech-language out-
comes at age 4, we conducted a series of separate multiple lin-
ear regression analyses to predict each speech-language out-
come. Modeling progressed as follows: we first fit a baseline
model that included only key demographic variables known
to impact child language development: child gender (dummy
coded as 0/1), child age at recording (coded continuously, in
months, centered and scaled), and maternal education (coded
continuously, on the 1-7 scale, centered and scaled). Next,
we fit an expanded model, which added CP (centered and z-
score normalized) at age 3 as an additional predictor of the
speech-language outcome. This scaling allows us to interpret
model outputs in terms of SDs, so we can assess how many
SDs of CP relate to a certain change on the formal speech-
language outcomes/assessments. Log likelihood ratio tests



Figure 2: Scatter plots of child outcomes versus canonical propor-
tion based on weighted and scaled model fits (to facilitate effect size
comparison between assessments), with regression lines and 95%
confidence intervals (shaded area) fitted from respective expanded
models: (A) GFTA-2 Standard Scores, (B) PPVT-4 Standard Scores,
(C) CTOPP-2 Elision, Scaled Scores, (D) RWR Accuracy, (E) NWR
Accuracy. Each point represents an individual child. Point size cor-
responds to number of audio clips used to derive canonical propor-
tion measure.
were conducted to determine best model fits. Model results
and summary statistics are summarized in Table 5.

Consonant Articulation The baseline model, explained
9% (R²=0.09) of the variance in articulation scores. The ex-
panded model significantly improved model fit compared to
the baseline (χ2=13.61(1), p<.001), justifying the addition of
CP. CP significantly predicted GFTA-2 scores 1 year later
(β=4.28, SE=1.15, p<.001): for every SD increase in CP,
the model predicts an additional 4.28 points on the GFTA-
2. Given that a +/-10-point differential on the GFTA-2 stan-
dard score scale corresponds to a +/-1 SD, +/-4.28 represents
a substantial effect—almost half a SD in articulation score.

Receptive Vocabulary The addition of CP to the model
significantly improved model fit for receptive vocabulary
(χ2=8.29(1), p=0.004): CP showed a slightly weaker relation-
ship with PPVT-4 scores than with speech articulation mea-
sures, though the relationship was still significant (β=4.01,
SE=1.40, p=0.01, R²=0.26), with a +/- 4.01 point increase
in PPVT-4 scores for every 1 SD increase in CP, once again
demonstrating an increase of nearly half an SD of the child’s
receptive vocabulary score for each SD increase in CP.

Phonological Awareness In the expanded model, CP
showed a moderate relationship with CTOPP-2 scores
(β=0.52, SE = 0.22, p = 0.02), explaining 11.5% of the vari-
ance (R²=0.12) (loglikelihood ratio test justifying addition of
CP to the baseline model: χ2=5.61, df=(1), p=0.02). The re-
lationship between CP and CTOPP-2 scores is thus substan-
tially weaker than the effects observed for speech articulation
and vocabulary (Figure 2c).

Lexical-Phonological Access CP did not show a reli-
able relationship with lexical-phonological access (β=0.01,
SE=0.004, p=0.15; no improvement to baseline model fit
(χ2=2.23, df=(1), p=0.14), suggesting that CP did not in-
crease the explanatory power of the model beyond demo-
graphic variables. It is also important to note the limited range
in accuracy of RWR between children (76-99%).

Phonological Working Memory CP significantly pre-
dicted (β=0.02, SE=0.01, p=0.01) NWR scores and signifi-
cantly improved model fit (χ2=13.61, df=(1), p<.001).

Ensuring robustness to CP computation To ensure that
our results were robust to differences in the number of clips
used to compute each child’s CP, we conducted an additional
analysis where we weighted our models (full weighting pro-
cess explained in project’s Github repository1). Summarized
results are presented in Table 5; in brief, we replicated all re-
sults: CP significantly predicts GFTA-2, PPVT-4, CTOPP-2,
and NWR Accuracy. Relationships between CP and the out-
come measures in the weighted models were just as, if not
more, robust as the unweighted models.

Discussion
This study demonstrates that automated analysis of canonical
proportion (CP) from naturalistic audio recordings at age 3
predicts various aspects of speech-language development at
age 4. This research represents an important first step in us-
ing automated measures of child speech maturity (CP) to as-
sess broader aspects of language development. The strongest
relationships were observed for consonant articulation skills,
where each SD increase in CP corresponded to approximately
+.5 SD increase on the standardized measure. Contrary to
our prediction, the relationship with receptive vocabulary was
nearly as strong, though the relationship with articulation sug-
gests that CP may more directly index the development of
speech-motor control systems than lexical-semantic knowl-
edge.

These findings have significant theoretical and method-
ological implications for the study of speech-language devel-
opment. The more robust relationship between CP and later
articulation skills suggests that the complexity of early vocal-
izations serves as a foundation for later speech sound devel-
opment even in the preschool years. Such a finding aligns
with theoretical frameworks typically conducted in infancy
that propose that babbling creates a bridge between early vo-

1https://github.com/rissaott/spog-automated-vocal-analyses-cp



Table 5: Summary of statistical model results and log likelihood ratio tests. Baseline models refer to demographic-only models.
Expanded models include CP as an additional predictor. Unscaled reported unscaled outcome measures (so coefficients can be
interpreted in terms of SDs on the formal assessment) while Scaled permit comparison of effect sizes between assessments.
Weighted models account for the number of canonical and non-canonical clips used to compute CP for each child, with higher
weighting put on those with more clips. LRT = log likelihood ratio test. * = P ≤ 0.05,** = P ≤ 0.01,*** = P ≤ 0.001.

Variable Model β SE p-value R² Log-Likelihood χ2 p-value (LRT)
Baseline (Unscaled) - - - 0.09 -457.56 - -

GFTA-2 (SS) Expanded (Unscaled) 4.28 1.15 <.001*** 0.19 -450.76 13.61 <.001***
Expanded (Scaled) 0.55 0.12 <.001*** 0.21 -171.97 19.69 <.001***
Weighted 7.01 1.55 <.001*** 0.21 -469.16 19.69 <.001***
Baseline (Unscaled) - - - 0.26 -476.99 - -

PPVT-4 (SS) Expanded (Unscaled) 4.01 1.40 0.01** 0.31 -472.84 8.29 0.004**
Expanded (Scaled) 0.41 0.10 <.001*** 0.28 -155.25 15.31 <.001***
Weighted 6.83 1.73 <.001*** 0.28 -484.02 15.31 <.001***
Baseline (Unscaled) - - - 0.06 -220.55 - -

CTOPP-2 (ES) Expanded (Unscaled) 0.52 0.22 0.02* 0.12 -217.75 5.61 0.02*
Expanded (Scaled) 0.36 0.12 0.003** 0.11 -145.68 9.15 0.002**
Weighted 0.80 0.26 0.003** 0.12 -226.29 9.15 0.002**
Baseline (Unscaled) - - - 0.11 134.27 - -

RWR Accuracy Expanded (Unscaled) 0.01 0.00 0.15 0.14 135.38 2.23 0.14
Expanded (Scaled) 0.24 0.15 0.11 0.16 -99.01 2.79 0.09
Weighted 0.01 0.01 0.11 0.16 126.57 2.79 0.09
Baseline (Unscaled) - - - 0.07 89.95 - -

NWR Accuracy Expanded (Unscaled) 0.02 0.01 0.01** 0.20 94.01 8.13 0.01**
Expanded (Scaled) 0.45 0.14 0.002** 0.30 -76.62 10.45 0.001**
Weighted 0.02 0.01 0.002** 0.30 90.68 10.45 0.001**

cal exploration and mature speech production (Vihman, De-
Paolis, & Keren-Portnoy, 2014). Second, the moderate re-
lationships found between CP and meta-phonological skills
(phonological awareness and working memory) suggest that
early speech production abilities may scaffold the develop-
ment of phonological processing capabilities, supporting the-
ories based on lab-based behavioral evidence that propose
shared mechanisms between speech production and phono-
logical processing systems in early development (DePaolis,
Vihman, & Nakai, 2013).

Methodological Implications With further evaluation and
scaling, this approach may enable more efficient and accessi-
ble methods to incorporate larger, more diverse samples into
studies of cognitive development as these methods do not re-
quire an in-person visit and are potentially scalable across di-
verse cultural settings. By incorporating children from more
diverse backgrounds, developmental scientists can stress test
their theories over more representative samples.

Future Directions and Conclusion
We note that there was wide variability in the number of clips
used to compute each child’s CP (18-10,769). We fit addi-
tional, weighted models as one method to ensure that our
results were robust to differences along this dimension, and
determined that the relationships between CP and speech-
language measures were not contingent upon the clip sample
size. This result is not surprising given that systematic eval-
uations of measurement stability of a related speech metric
in infancy, canonical babbling ratio, have found that N=100
samples are sufficient (Molemans, Van Den Berg, Van Sev-
eren, & Gillis, 2012). Nevertheless, CP is different from
canonical babbling ratio along several dimensions (age of

child, duration of typical clips) and these data were likewise
noisier than many of the data reported in Molemans et al.
Thus, going forward, we will evaluate the robustness of CP
measures by clip sample size as well as within children by
computing CP by, for example, hour of the day to compute
a confidence interval around each child’s measure. Analy-
ses such as these will be important to clarify the stability
and eventual practical use of automated vocal analyses. It
is also important to note that the sample in this study was
relatively homogeneous, with most participants being white,
from mid to high SES backgrounds. Future work should aim
to address this by including samples from a broader range of
demographic backgrounds to ensure that CP can be reliably
used as a speech-language measure across diverse groups.

Another important line of future research could be to un-
derstand how CP relates to speech-language measures in in-
fancy, though standardized measures of phonological devel-
opment are harder to derive at these early ages. Still, we
believe that an important next step may be to, evaluate the
relationship between CP and infant vocabulary, as reported
in the Macarthur-Bates parent checklists. Such an analysis
would also lend itself to cross-linguistic investigations of the
relevance of CP to predict other areas of speech and lan-
guage since CP is, in theory, relatively language-neutral (the
model was trained on a diverse set of typologically-diverse
languages) and there exist large databases of standardized re-
ports of infants’ developing vocabulary in many languages
(Frank, Braginsky, Yurovsky, & Marchman, 2021) that do not
exist for other outcomes such as consonant articulation skill.
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